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Abstract

The principal resonance of a second-order linear stochastic oscillator to combined harmonic and random
parametric excitations is investigated. The method of multiple scales is used to determine the equations of
modulation of amplitude and phase. The effects of damping, detuning, bandwidth, and magnitudes of
random excitation are analyzed. The method of path integration is used to obtain the steady state
probability density function of the system, and then the largest Lyapunov exponent is calculated. The
almost-sure stability or instability of the stochastic system depends on the sign of the largest Lyapunov
exponent. The theoretical analyses are verified by numerical results.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Loadings imposed on the structures are quite often random forces, such as those arising from
earthquakes, wind and ocean waves, which can be described satisfactorily only in probabilistic
terms. The response of the structure is governed by the stochastic differential equations, in which
the parameters or coefficients are stochastic processes. Investigations of stability under parametric
random excitation have become increasingly important.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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According to the multiplicative ergodic theorem of Oseledec [1], the almost certain stability
of the trivial solution of a system can be determined by the largest Lyapunov l ¼ lmax; i.e.,
when lo0 the trivial solution is almost certainly stable and when l40 the trivial one is unstable.
There are some studies on the calculation of the largest Lyapunov exponent under
stochastic excitations [2–8]. However, the result is quite limited under combined harmonic and
stochastic excitations [9]. In this paper, the principal resonance of a second-order linear
stochastic system to combined harmonic and random parametric excitation is investigated. The
method of multiple scales is used to determine the equations of modulation of amplitude and
phase. The effects of damping, detuning, bandwidth, and magnitudes of random excitation are
analyzed. The method of path integration is used to obtain the steady-state probability density
function of the system, and then the largest Lyapunov exponent is calculated. The almost-sure
stability or instability of the stochastic system depends on the sign of the largest Lyapunov
exponent.

Consider the following second-order system parametric excited by combined harmonic and
random excitations:

€u þ �b _u þ o2
0u þ �uðk cos O1t þ xðtÞÞ ¼ 0; (1)

where dots indicate differentiation with respect to the time t, e51 is a small parameter, b and o0

are damping coefficient and natural frequency, respectively, and xðtÞ is a stochastic process which
is governed by the following equation advanced by Wedig [4]:

xðtÞ ¼ h cosðO2t þ ḡW ðtÞÞ;

where W ðtÞ is a standard Wiener process. According to Wedig [4], in the case when h ¼ ḡ
� ffiffiffi

2
p

!

1; xðtÞ may represent a wide-band noise, and in the case when ḡ ! 0 xðtÞ may represent a
narrow-band random noise.

For h ¼ 0; the parametric excitations are only the deterministic harmonic ones; in this case
system (1) goes over to the well-known Mathieu equation, and there are many well-established
theories [10,11] for the stability of the trivial solution of system (1). For k ¼ 0; the parametric
excitations are only the random ones, in this case the invariant measures and largest Lyapunov
exponent of system (1) have been evaluated by Wedig [4] using numerical simulation and
perturbation method, Dimentberg [5] and Huang and Zhu [6] using stochastic averaging
method, and the authors of this paper [7] using the multiple scales method. The moment
Lyapunov exponents of system (1) have been studied by Xie [8] using the regular perturbation
method in the case when k ¼ 0; recently. However, the largest Lyapunov exponent of system (1)
under combined harmonic and random parametric excitations has not been evaluated in the case
for ka0; ha0:
2. Multiple scales method

The method of multiple scales [10,11], which has been widely used in the analysis of
deterministic systems, has been extended to the analysis of nonlinear stochastic systems
in recent years [7,12–14]. In this paper, the multiple scales method is used to investigate
the response and stability of system (1). Then, a uniformly approximate solution of Eq. (1) is
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sought in the form

uðt; �Þ ¼ u0ðT0;T1Þ þ �u1ðT0;T1Þ þ � � � ; (2)

where T0 ¼ t;T1 ¼ �t are fast and slow scales respectively.
By denoting D0 ¼ q=qT0;D1 ¼ q=qT1; the ordinary-time derivatives can be transformed into

partial derivatives as

d

dt
¼ D0 þ �D1 þ � � � ;

d2

dt2
¼ D2

0 þ 2�D0D1 þ � � � : (3)

Substituting Eq. (2) and (3) into Eq. (1) and comparing coefficients of � with equal powers, one
obtains the following equations:

D2
0u0 þ o2

0u0 ¼ 0; (4)

D2
0u1 þ o2

0u1 ¼ 	2D0D1u0 	 bD0u0 	 ku0 cos O1t 	 hu0 cosðO2t þ ḡW ðtÞÞ: (5)

The general solution of Eq. (4) can be written as

u0ðT0;T1Þ ¼ AðT1Þexpðio0T0Þ þ cc; (6)

where cc represents the complex conjugate of its preceding terms, and AðT1Þ is the slowly varying
amplitude of the response. Substituting Eq. (6) into Eq. (5), one obtains

D2
0u1 þ o2

0u1 ¼ 	 2ioA0 expðio0T0Þ 	 io0bA expðio0T0Þ

	
k

2
A exp iðO1 þ o0ÞT0½ � 	

k

2
Ā exp iðO1 	 o0ÞT0½ �

	
h

2
A exp iðO2 þ o0ÞT0 þ gW ðT1Þ½ �

	
h

2
Ā exp i O2 	 o0ð ÞT0 þ gW ðT1Þ½ � þ cc; ð7Þ

where the prime stands for the derivative with respect to T1 and the overbar stands for the
complex conjugate, g ¼ ḡ=

ffiffi
�

p
: For Wiener progress W ðtÞ; EW ðtÞ ¼ 0; EW 2ðtÞ ¼ t; one has

ḡW ðtÞ ¼ ðḡ
� ffiffi

�
p

ÞW ð�tÞ ¼ gW ðT1Þ:

From the fourth and sixth terms on the right-hand side of Eq. (7), it is clear that
resonance occurs when O1 
 2o0;O2 
 2o0: In what follows we shall investigate the
principal resonances of system (1). To express quantitatively the nearness of these resonances,
one introduces the detuning parameters s1 and s2 according to O1 ¼ 2o0 þ �s1; O2 ¼ 2o0 þ �s2:
One has

O1 	 o0ð ÞT ¼ o0T0 þ s1T1; ðO2 	 o0ÞT ¼ o0T0 þ s2T1:

Using the above equation, we can transform the small-divisor terms, which arise from
exp i O1 	 o0ð ÞT½ � and exp i O2 	 o0ð ÞT½ � in Eq. (7) into secular terms. Then, eliminating the secular
terms yields

2io0A0 þ ibo0A þ
k

2
Ā expðis1T1Þ þ

h

2
Ā expðis2T1 þ igW ðT1ÞÞ ¼ 0: (8)
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Expressing A in the polar form AðT1Þ ¼ aðT1Þexp ijðT1Þ½ �; substituting this equation into Eq.
(8) and separating the real and imaginary parts of Eq. (8), one obtains

a0 ¼ 	
b
2

a 	
k

4o0
a sin Z1 	

h

4o0
a sin Z2;

aZ01 ¼ s1a 	
k

2o0
a cos Z1 	

h

2o0
a cos Z2;

aZ02 ¼ s2a 	
k

2o0
a cos Z1 	

h

2o0
a cos Z2 	 gaW 0ðT1Þ;

(9)

where

Z1 ¼ s1T1 	 2j; Z2 ¼ s2T1 	 2jþ gW ðT1Þ
3. Largest Lyapunov exponent

It is obvious that Eq. (9) have a solution a ¼ 0; which corresponds to the trivial steady-state
response. Now we discuss its stability. Let v ¼ ln a; Eq. (9) can be written as:

dv ¼ 	
b
2
	

k

4o0
sin Z1 	

h

4o0
sin Z2

� �
dT1;

dZ1 ¼ s1 	
k

2o0
cos Z1 	

h

2o0
cos Z2

� �
dT1;

dZ2 ¼ s2 	
k

2o0
cos Z1 	

h

2o0
cos Z2

� �
dT1 	 g dW :

(10)

It is clear that the stochastic processes ðZ1ðT1Þ; Z2ðT1ÞÞ generated on ½0; 2p� � ½0; 2p� by Eq. (10)
are Markov, and since the diffusion process is non-singular, they are ergodic on the ½0; 2p� �
½0; 2p�: The invariant measure (steady-state probability density function) pðZ1; Z2Þ of the processes
ðZ1ðT1Þ; Z2ðT1ÞÞ is governed by the following FPK equation:

q2p

qZ2
2

	
q
qZ1

s̄1 	 k̄ cos Z1 	 h̄ cos Z2

� �
p

� �
	

q
qZ2

s̄2 	 k̄ cos Z1 	 h̄ cos Z2

� �
p

� �
¼ 0; (11)

where

s̄1 ¼
2s1

g2
; s̄2 ¼

2s2

g2
; h̄ ¼

h

o0g2
:

The unique solution satisfying both the periodicity condition

pðZ1; Z2Þ ¼ pðZ1 þ 2p; Z2Þ ¼ pðZ1; Z2 þ 2pÞ

and normality condition
R 2p
0

R 2p
0 pðZ1; Z2Þ dZ1 dZ2 ¼ 1; respectively.

Eq. (11) generally can be solved only numerically. The method of path integration is one such
numerical procedure and it is appropriate for the present purpose. Early application of the path
integration to solving FPK equation was made by Wehner and Wolfer [15], and recent
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improvements of the technique can be found in Ref. [16]. According to Oseledec’s multiplicative
ergodic theorem [1], the exponential growth rate (i.e., the Lyapunov exponent) of the
corresponding solution aðT1; a0; Z0Þ of Eq. (9) for any initial values ða0; Z0Þ is given by

lða0; Z0Þ ¼ lim
T1!1

1

T1
ln a T1; a0; Z0

� �

 

; w:p:1

where w.p.1 means with probability one (almost sure). lða0; Z0Þ can take only the following
deterministic values:lmin ¼ l2ol1 ¼ lmax: The almost certain stability of the trivial solution (9)
can be determined by the largest Lyapunov l ¼ lmax; i.e., when lo0 the trivial solution is almost
certainly stable and when l40 the trivial one is unstable, hence l=0 is the bifurcation point of
the stability of the trivial solution. From Eq. (10), one has

l ¼ lim
T1!1

1

T1
ln

aðT1Þ

að0Þ










 ¼ lim

T1!1

1

T1
ðvðT1Þ 	 vð0ÞÞ

¼ 	
b
2
	 lim

T1!1

1

T1

Z T1

0

k

4o0
sin Z1ðtÞ þ

h

4o0
sin Z2ðtÞ

� 

dt

¼ 	
b
2
	

k

4o0
E sin Z1

� �
	

h

4o0
E sin Z2

� �

¼ 	
b
2
	

k

4o0

Z 2p

0

Z 2p

0

pðZ1; Z2Þsin Z1 dZ1 dZ2 	
h

4o0

Z 2p

0

Z 2p

0

pðZ1; Z2Þsin Z2 dZ1 dZ2: ð12Þ

Herein, the steady-state probability density function pðZ1; Z2Þ can be solved numerically from
Eq. (11) by the method of path integration; then, the largest Lyapunov l can be solved
numerically from Eq. (12).
4. Numerical results and conclusions

For the first representative case b ¼ 0:0; o0 ¼ 1:0;s1 ¼ k ¼ 0:0; in which the parametric
excitations are only the random ones, the variations of l governed by Eq. (12) with s2 and h are
shown in Fig. 1.
Fig. 1. Largest Lyapunov exponent of system (10): (a) g ¼ 0:1; (b) g ¼ 2:0:
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Fig. 2. Largest Lyapunov exponent of system (10): (a) g ¼ 0:1; (b) g ¼ 2:0:

Fig. 3. Largest Lyapunov exponent of system (10): (a) g ¼ 0:1; (b) g ¼ 2:0:

H.W. Rong et al. / Journal of Sound and Vibration 283 (2005) 1250–1256 1255
Fig. 1 shows three-dimensional plots of the Lyapunov number l over the parameter range
0php10 and 	10ps2p10. There are obviously two different solution ranges for the Lyapunov
exponents. Near the parameter resonance at excitation frequency O2 ¼ 2o0; the Lyapunov
exponents increase, reaching their maximum values in the center of the instability region. Outside
the mountain, there exists a complete plane where the Lyapunov exponents possess the constant
value l=0. Herein, they are independent of frequency O2 and amplitude h of the random
parameter excitation. Obviously, the sharp separation between both parameter ranges is
smoothed out for increasing frequency fluctuation.

For the second representative case b ¼ 0:0; o0 ¼ 1:0; s1 ¼ 0:0; k ¼ 1:0; in which the parametric
excitations are combined harmonic and random ones, the variations of l governed by Eq. (12) are
shown in Fig. 2. There is a mountain in Fig. 2, which is similar to Fig. 1. However, outside the
mountain, there is not a complete plane in Fig. 2, which is different from Fig. 1. Near the area of a
small value of h, the Lyapunov exponent is greater than zero, which means that the deterministic
excitation makes the system attain almost sure instability. However, in the area of big value of
h47; the Lyapunov exponents (outside the mountain) is smaller than zero, which means that the
random excitation helps the system become stability. It is something interesting that the random
noise can sometimes stabilize the system.

For the third representative case b ¼ 0:0; o0 ¼ g ¼ 1:0; s1 ¼ 1:0; k ¼ 3:0; the variations of l
governed by Eq. (12) are shown in Fig. 3.
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For the first time, the largest Lyapunov exponent of the system under combined harmonic and
stochastic bounded excitations is calculated. Numerical calculation shows that l is a decreasing
function of s1j j; s2j j; and reaches its maximum value when s1 ¼ s2 ¼ 0; which means that the
trivial solution will lose its stability and become unstable as the frequencies of the harmonic and
random excitations are near the principal resonance frequencies O1 ¼ O2 ¼ 2o0: In some
parameter areas, the random noise can stabilize the system.
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